

Veterans Health Information Model (VHIM) 3.3
Modeling Style Guide

Veterans Health Administration
Office of Information

Health Information Architecture

December 2005

VHIM Style Guide ii

Revision History

Date Revision Description Author

12/1/05 1.0 Final Draft Galen Mulrooney

TABLE OF CONTENTS

1. Purpose... 3
2. General Approach... 3
3. Models .. 11
4. Packages... 11
5. Classes .. 12
6. Attributes... 12
7. Associations .. 13
8. UML Profile ... 14
9. Stereotypes... 14
10. Definitions .. 14
11. Naming ... 15
12. Aesthetics ... 16
13. Issues .. 16
14. Acronyms ... 16

VHIM Style Guide 3

Veterans Health Information Model (VHIM) 3.3
Modeling Style Guide

1. Purpose
As the VHIM will be prepared by multiple individuals, the use of a consistent modeling style is
desirable. In addition, because the VHIM is an enterprise model to be used by multiple projects,
a common style is needed to ensure consistency. A common style enhances readability, reduces
complexity, and reduces the learning curve of new readers of the model. This section defines the
elements of the style to be used in VHIM models.

All models conformant to this Style Guide are required to be developed with the most recent
version of the toolset currently in use (currently Rational Rose, which implements UML version
1.4). In addition, the style selected should leverage the power of the tool to create code in Java or
XML/XMI.

2. General Approach
One of the goals of the VHIM modeling project is to align with the emerging Health Level 7
(HL7) 3.0 standard. In addition, we wish to leverage the expertise and efforts put into HL7’s
modeling effort. HL7’s development methodology currently employs some non-UML tools and
processes which the VHIM effort wishes to emulate but in a manner consistent with UML
modeling practice.

The HL7 process begins with approximately 60 high- level classes called the Reference
Information Model (RIM). These classes serve as a pattern or a metamodel for modeling efforts
with HL7. The RIM classes are further categorized into what HL7 calls the “Act-Role-Entity
pattern” (see figure 1). Entities (people, organization, things, etc.) play a Role (patient, provider,
etc.) as they Participate in Acts (planned or unplanned events, or actions). These classes and
their subclasses are color-coded: Entities are green, Roles are yellow, Participations are blue,
and Acts are light red. The VHIM follows the same color-coding.

The various groups within HL7 model their area of interest using copies of the RIM Classes.
Such a model is called a Domain Message Information Model (DMIM). For example, there is a
RIM class called Act, which represents any act or event in which we are interested. The
pharmacy DMIM may thus contain a SubstanceAdministrationEvent class that is a copy of the
Act class. Importantly, RIM attributes that are not needed by the DMIM are removed.

Once the DMIM is completed, Refined Message Information Models (RMIMs) may be derived.
The RMIM is a subset of the DMIM that is used to model an individual message specification.
Class attributes that are not needed by the RMIM are removed. In addition, the data type of the
attribute may be restricted. For example, the RIM and the DMIM may allow an attribute to be a
number, but the RMIM may require it to be an integer. Similarly, the RIM and the DMIM may
allow an attribute to have zero to many occurrences, the RMIM may require it to exist only once.

VHIM Style Guide 4

Figure 1: The HL7 Reference Information Model (RIM)

HL7 has defined a set of complex data types. As in the above process, HL7 removes unneeded
attributes in subclasses. The VHIM uses the HL7 data types. But because the VHIM is UML-
compliant, the inheritance relationships of the HL7 data types have been modified. For example,
Entity Name (EN) defines 5 attributes. It has three subtypes, two of which (Person Name (PN)
and Organization Name (ON)) have all 5 attributes, but one subtype (Trivial Name (TN)) has
only one of the attributes. In the VHIM, EN becomes a subtype of TN, which then only has two
subtypes: ON and PN.

The VHIM thus contains a Data types package which describe the HL7 data types in rigorous
UML. The VHIM also contains a package containing a replica of the HL7 RIM, but us ing the
VHIM data types instead of the HL7 data types. This package is called the VHIM RIM.

Unlike the HL7 process, wherein RIM classes are copied to create “subclasses”, the VHIM
process uses the VHIM RIM classes as a metamodel. The VHIM RIM classes become a UML
Profile (see section 8 below), which dictates the structure of the VHIM classes. The VHIM
classes are stereotyped to refer back to the VHIM RIM class.

In HL7, top- level classes contain a Class Code (or, in some cases, a Type Code), which indicates
what “subclass” of the top level class is being modeled. In addition, the Act class has a Mood
Code which also effectively acts to differentiate between subclasses. The VHIM will declare the
classes explicitly (see figure 2). The business name of the class code will become the name of

VHIM Style Guide 5

the VHIM class. If the class is an Act, the business name of the mood code will be appended to
the name. The class code and the mood code will not appear in the derived classes.

For example, in figure 2, the Act with the class code SBADM (business name =
SubstanceAdministration) has four allowable mood codes: a) PRP (Propose); b) RQO (Request);
c) PRMS (Promise); and d) EVN (Event). In the VHIM, this will be represented as four separate
classes: SubstanceAdministrationPropose, SubstanceAdministrationRequest,
SubstanceAdministrationPromise, and SubstanceAdministrationEvent.

Figure 2: Relationship between VHIM RIM and VHIM Classes

Similarly, the attributes of the VHIM RIM classes will guide the attributes of the corresponding
VHIM classes. The names of the attributes of the HL7 RIM classes are purposefully generic so
they can handle the needs of all potential subclasses. Additionally, HL7 data types are complex
and may contain multiple values (e.g., Person.addr may contain a home address and a work
address).

Thus the generic names combine with the multiplicity of concepts contained in the attribute to
create a model that is not as expressive or as rigorous as it otherwise might be. The user of the
model is forced to resort to other tools to properly define the concepts being modeled and to
constrain the values that the attributes may contain. For example Act.priorityCode may contain
UD for Use as Directed. This code is useful for SubstanceAdministration Acts, but is useless for
a FinancialTransaction Act.

Act
+ classCode : CS = SBADM
+ moodCode : CS = PRP, RQO, PRMS, EVN
...

SubstanceAdministrationRequest
...

<<Act>>

SubstanceAdminstrationPromise
...

<<Act>>

SubstanceAdministrationPropose
...

<<Act>>

SubstanceAdministrationEvent
...

<<Act>>

HL7 VHIM
Act

+ classCode : CS = SBADM
+ moodCode : CS = PRP, RQO, PRMS, EVN
...

SubstanceAdministrationRequest
...

<<Act>>

SubstanceAdminstrationPromise
...

<<Act>>

SubstanceAdministrationPropose
...

<<Act>>

SubstanceAdministrationEvent
...

<<Act>>

HL7 VHIM

VHIM Style Guide 6

The VHIM solves this problem in two ways. First, each of the HL7 RIM class attributes will be
modeled as classes, which are called Refined Data Types (RDTs). These classes will be
subclasses of the data type (see figure 3). For example, the HL7 Act class has an effectiveTime
attribute, which is of type GTS. The VHIM defines a class called EffectiveTime, which is a
subtype of GTS.

This allows us to split out the different concepts that are “buried” in the data type. For example,
in HL7, the SubstanceAdministrationRequest.effectiveTime contains dozens of times, including
dose frequency (e.g., 2 times a day), duration (e.g., 30 minutes), Start Date (e.g. Jan. 1st), End
Date (e.g., Jan 16th), etc. In the VHIM, these concepts are modeled explicitly (see figure 4).
Note that instead of having one attribute called effectiveTime, the VHIM now has four attributes
which are of type EffectiveTime. This model is more readable, and easier to implement.

Figure 3: Transformation of RIM attributes to VHIM Refined Data Types

Figure 4: Using Refined Data Types to explicitly convey hidden concepts

The second problem encountered with the HL7 RIM is that attributes represented by a codeset
must be constrained so that only an appropriate codeset is used. If the State in an address is a
code, there is no automated way to prevent someone from inserting a code from another codeset
in that attribute. “Boston, Magenta” makes no sense, but is legal. To prevent this, the VHIM
subclasses both the concept of CodeSet (also known as Coding Scheme, or Code System) and of

EffectiveTime

Act
+ classCode : CS
+ moodCode : CS
+ effectiveTime : GTS
...

GTS

EffectiveTime

Act
+ classCode : CS
+ moodCode : CS
+ effectiveTime : GTS
...

GTS

Act
+ classCode : CS = SBADM
+ moodCode : CS = RQO
+ effectiveTime : GTS
...

SubstanceAdministrationRequest
+ doseFrequency : EffectiveTime
+ doseDuration : EffectiveTime
+ startDate : EffectiveTime
+ stopDate : EffectiveTime
...

<<Act>>
Act

+ classCode : CS = SBADM
+ moodCode : CS = RQO
+ effectiveTime : GTS
...

SubstanceAdministrationRequest
+ doseFrequency : EffectiveTime
+ doseDuration : EffectiveTime
+ startDate : EffectiveTime
+ stopDate : EffectiveTime
...

<<Act>>

VHIM Style Guide 7

the CodedValue (also known as a Code or Coded Term). The subclassing allows one to
explicitly indicate the codeset(s) that may legally be used. Note in figure 5 how Address.state is
of type StateCodedValue, therefore the assignment of a CountryCodeValue to Address.state
would be illegal.

Figure 5: Explicitly declaring acceptable coded values

Code

+ codingSystem : String = "2.16.840.1.113883.6.233"
(from Entity)

CountryCodeSet
+ codeSet : String = "7654321"

CountryCodedValue
+ code : String
+ displayName : String

Address
+ streetLine1 : String
+ streetLine2 : String
+ city : String
+ state : StateCodedValue
+ postalCode : String
+ country : CountryCodedValue

StateCodeSet
+ codeSet : String = "1234567"

StateCodedValue
+ code : String
+ displayName : String

Code

+ codingSystem : String = "2.16.840.1.113883.6.233"
(from Entity)

CountryCodeSet
+ codeSet : String = "7654321"

CountryCodedValue
+ code : String
+ displayName : String

Address
+ streetLine1 : String
+ streetLine2 : String
+ city : String
+ state : StateCodedValue
+ postalCode : String
+ country : CountryCodedValue

StateCodeSet
+ codeSet : String = "1234567"

StateCodedValue
+ code : String
+ displayName : String

VHIM Style Guide 8

Also note that Code.codingSystem represents the OID for the VHA VUID registry. The value of
this element is initialized and frozen within the VHIM. The codeSet is also initialized and frozen
in the VHIM. This codeSet is the VUID for the corresponding Code Set. Thus, the
codingSystem and the codeSet are defined at design-time by the VHIM. The actual code (e.g.,
Virginia or Utah) is determined at run-time. Note that, although VUIDs are integers, they are
declared as Strings. This allows us to substitute an OID for the VUID when communicating
outside of the VHA.

These explicitly defined codesets are called Specialized Refined Data Types (SRDTs). The
SRDTs created for a given domain are placed in a package within the Domain package. Thus,
when a partition is being modeled, the modeler does not need to check out multiple packages. In
addition, this structure prevents the domain model from being cluttered. The RDTs are stored
within the VHIM RIM package.

Please note that, while this example is showing how Entity.Code is being subclassed, such
subclassing must be performed for each coded RDT. For example, a surgery Act might require a
surgery type codeset. In this case, the top-level class would be Act.Code, not Entity.Code. Note
also that those coded RDTs that have been subclassed into SRDTs are abstract in the VHIM
RIM, and contain only the codingSystem attribute. Other RDTs, which have not yet been
subclassed into RDTs are concrete in the VHIM RIM, and contain all four attributes.

As mentioned previously, the HL7 process involves taking a general specification and
constraining the specification as needed for individual domains. This process applies to data
types as well. For example, an element that is defined as a GTS (General Time Specification)
can be constrained to be a TS (Time Stamp) for a particular instance. This is handled by the
VHIM by subtyping the RDT into type-specific RDTs. For example, in HL7, Observation.value
is defined as an ANY. Figure 6 shows how the corresponding RDT (the Value class) is subtyped
into specifically-typed classes. Thus, if it is known that a particular observation value attribute
should be a real number (e.g., a temperature reading), we would specify RealValue as the
datatype for the attribute vice Value.

VHIM Style Guide 9

Figure 6: Explicitly declaring constrained datatypes

Two style changes have been introduced in version 3.2: 1) separate classes have been created for
each PractitionerParticipation that we are using, and 2) date/time RDTs have been subclassed to
explicitly contain either a single date/time (a timestamp), or two date/times (a time range).

SomeAct
<<Act>>

PractitionerParticipation

+ functionCode : FunctionCode
+ signatureMode : ModeCode
+ signatureText : SignatureText
+ time : Time
+ transmittalMethod : ModeCode
+ comments : NoteText

(from Common)

<<Participation>>

1 0..1

+author

1

+dataEnterer

0..1

SomeAct
<<Act>>

PractitionerParticipation

+ functionCode : FunctionCode
+ signatureMode : ModeCode
+ signatureText : SignatureText
+ time : Time
+ transmittalMethod : ModeCode
+ comments : NoteText

(f rom Common)

<<Participation>>

Author
(from Common)

<<Participation>>

1
+author

1

DataEnterer
(f rom Common)

<<Participation>>

0..1

+dataEnterer

0..1

Figure 7: Practitioner Participation Style: version 3.1 to version 3.2

Value

+ nullFlavor : String = "NI"

TextValue

+ value : String

<<ST>>

RealValue

+ value : REAL
+ precision : Integer

<<REAL>>
PhysicalValue

+ value : REAL
+ unit : UnitOfMeasureCode

<<PQ>>

CodedValue

+ codingSystem : String = "2.16.840.1.113883.6.233"

<<CV>>

RatioValue

+ numerator : REAL
+ denominator : REAL

<<RTO>>

BooleanValue

+ value : Boolean

<<BL>>
DateValue

+ value : TimeStamp

<<TS>>

Note: Subclasses of this class
(SRDTs) should be created in each
Domain

VHIM Style Guide 10

In previous versions, practitioner participations were modeled as associations from an Act to
PractitionerParticipation. The association end name indicated what kind of participation was
involved. This caused the VHIM XSDs to differ significantly from the HL7 XSDs. In version
3.2, explicitly named subclasses have been created for each kind of participation. A side effect
of this style is that the association end name may be different than that of the target class, so that
a more common name may be substituted for the HL7 name (e.g., we could use “co-signor”
instead of “legalAuthenticator”. See figure 7.

The date/time RDTs are modeled as time intervals, and thus may contain two date/times. In
some cases, it doesn’t make sense to have two date/times. In HL7, datatypes may be
constrained. In the VHIM we do this by subclassing. Figure 8 shows how Act.EffectiveTime
has been subclassed into EffectiveTimeSpan and EffectiveTimeStamp. Note that EffectiveTime
is now abstract.

EffectiveTime

<<Opt>> + literal : String
+ low : TimeStamp

<<GTS>>

EffectiveTime
Stamp

EffectiveTimeSpan
+ high : TimeStamp
<<Opt>> + width : TimeQuantity

Figure 8: Effective Time subclassing

VHIM Style Guide 11

3. Models
Two series of models will be created and maintained: the Computationally Independent Models
(CIM), and the Platform Independent Models (PIM). The CIM model will be named
VHIMxxxx, where xxxx is the release number (e.g., VHIM3000.mdl, VHIM3100.mdl). The
PIM model will be named VHPIMxxxx, where xxxx is the release number. The CIM models
will define the domain packages, data types, RIM classes, RDTs, and the UML Profile. The PIM
models will reuse these elements, plus add any project-specific elements, such as message
template packages. It is noted that when using Rational Rose, a .cat file from one model may be
re-used in another model.

4. Packages

• As the healthcare domain is very large, it is convenient to partition the domain into
smaller portions for consideration. These portions correlate with UML packages, in
which related classes will be stored. Other packages, such as common data types will
also be employed. It is important to consider that the packages are an artificial grouping
of portions of the healthcare domain; the VHIM is to be considered the union of all the
packages. Packages also form the basis of version control; that is, users will check out
and check in work at the package level.

• All packages must have simple generic names (e.g., Lab)
• Package names may not contain spaces, underscores, or other punctuation.
• Package names are to be in UpperCamelCase. That is, separate words are concatenated,

and are all lower case, except that the first letter of each sub-word is capitalized. For
example, VitalSigns.

• Each package shall be saved in its own file. The name of the file shall be identical to the
package name. In Rational Rose, these files are .cat files.

• Package names will contain a version number. If any change is made to a versioned
instance of a package, such as an element name, the package name shall be updated. The
version number will be four digits appended to the end of the package name; the first two
digits indicate the model version in which the package was last modified, the last two
digits are an incremental number which indicate the number of revisions made to the
package since inception of the package. A package that has not changed will retain its
name. For example, say that a Lab package was created in VHIM 3.0, was unchanged in
VHIM 3.1, but modified in VHIM 3.2. The package name would be Lab3001, Lab3001,
and Lab3202 in VHIM 3.0, 3.1, and 3.2, respectively.

• A package will be frozen once the VHIM version in which it was constructed is released.
Any defect change that causes a maintenance release of the VHIM will cause the package
name to be changed. For example, if a defect was discovered in Lab3201 within VHIM
3.2, the Lab package may be corrected and called Lab3202.

• Project-specific packages (such as a Message Template) will not refer to more that one
version of a domain package for the same topic and a domain package will not refer to
more than one version of the data types package. For example Labs3001 has been
released with VHIM 3.0 and new concepts need to be added for VHIM 3.2. A new

VHIM Style Guide 12

package Labs3201 is constructed which starts as a complete clone of Lab3001 from
which features are added or removed as necessary.

• While desirable, it is not required that a new version of a domain package be backward
compatible with its previous version. It is up to the individual projects to determine to
which version they will conform.

5. Classes

• Classes must be uniquely named between domain partitions; in other words, two classes
in two different domains may not have the same name. It is understood that the converse
is true when speaking of two different versions of the same domain; in general, the
classes must have the same names, unless there was a need to rename a class. Note that
while classes may appear in multiple domain diagrams, they only belong to one package.
This rule is concerned with naming of different classes, not the re-use of a class by
multiple partitions.

• Class names must be nouns and singular.
• Names of classes should be no more than 30 characters in length.
• A class name may not contain spaces, underscores, or other punctuation.
• Class names are to be in UpperCamelCase. That is, separate words are concatenated, and

are all lower case, except that the first letter of each sub-word is capitalized. For
example, MedicationOrder.

• Attributes are to be arranged alphabetically within the class, unless it makes more sense
to arrange them in a different manner (e.g, city, state, zip in an address class). If a class
has an “id” attribute, that attribute may be placed first.

• Classes are to be stereotyped to indicate which VHIM RIM class is being used as a
pattern for the class.

• Multiple- inheritance is not allowed.
• When Sub-typing, care should be taken to ensure that the generalization makes sense

(i.e., object A "is a" object B).
• Association classes are not acceptable due to tooling issues. If an association class is

needed, transform it into an intermediate class between the connected classes.

6. Attributes
• Attributes should be named so that there is as little ambiguity as possible in the purpose

of the attribute. Ideally, any user of the model should be able to deduce what the attribute
represents based simply on the name. For example, the term “entry” is used often in
CPRS. Entry to what? Is this when a patient enters a hospital? By using the term
“dataEntry”, it is now clear what the attribute represents.

• An attribute name should not contain spaces or other punctuation.
• Attribute names are to be in lowerCamelCase. That is, separate words are concatenated,

and are all lower case, except that the first letter of each sub-word following the first sub-
word is capitalized. The first sub-word is lower case. For example,
“numberOfRefillsAuthorized”. This rule applies to acronyms as well. “deaNumber” is
easier to read than “DEANumber”.

VHIM Style Guide 13

• The use of abbreviations is discouraged, but may be used when they are commonly used
in healthcare. However, the use of “id” is encouraged instead of “identifier”. Note that
commonly used acronyms are acceptable. Thus, deaNumber is acceptable.

• Attribute names must be unique within the context of a class and its supertypes.
• Non-boolean attribute names should be nouns and singular. Boolean attribute names

should read like a question, and should start with a verb. For example, “isActive”,
“needsSpecialApproval”. The verb “is” is preferred.

• Unlike common practice in Entity-Relationship modeling, as a rule of thumb, the class
name should not be pre-pended to the attribute name, as the class name is required to
access the attribute. For Example, the attribute for “name” in the “Person” class should
be called “name” vice “personName” as it is accessed by Person.name.
Person.personName is redundant.

• The use of “code” or “flag” is discouraged. These terms imply a particular
implementation, and do not impart any additional meaning, as the fact that an attribute is
a code is known from its data type.

• The use of “type” and “class” is not allowed. These are both reserved words in some
programming languages. Use the word “category” instead.

• The use of “number” should be avoided unless the attribute is and always will be a
number. For example, “patientNumber” implies tha t the attribute is numeric. “patientId”
better describes the attribute, as it is an identifier for the patient, and does not imply a
particular implementation.

• Attributes should have public visibility.
• The data type of an attribute must be a Refined Data Type (RDT), or a Specialized

Refined Data Type (SRDT). Furthermore, the data type must be (or inherit from) a
VHIM RIM attribute within the class being used as a pattern. For example,
RepeatNumber is a valid data type, but is only valid for Act classes.

• If the data type of an attribute is another VHIM class (i.e., not a RDT or SRDT), it should
be modeled as an association to the other class.

• If an attribute is optional, apply the stereotype <<Opt>>.
• If an attribute has a cardinality of more than one (i.e., 0..n or 1..n), use the stereotype

<<Set>>, <<List>>, or <<Bag>>

7. Associations

• Association names are optional.
• Uni-directional associations are preferred. However, bi-directional associations are

allowed if both associationEnds must be maintained simultaneously (e.g., in a “marriage”
relationship, the “husband” and the “wife” roles are both created and both destroyed with
the relationship).

• Circular associations (e.g., A ? B ? C ? A) are not allowed, unless C associates with a
new and unique instance of A.

• Recursive associations (i.e. A ? A) are allowed. It is understood that the association is
between two instances of A.

VHIM Style Guide 14

• The associationEnd name on the target end is required. associationEnd names follow the
same rules as attribute names. If the association is bidirectional, both associationEnd
names must be specified.

• Association cardinality must be specified at the target class (i.e., at the arrowhead).
There is no relevance for cardinality at the tail in uni-directional associations, and
therefore, no cardinality will be used on the tail end. This is because the instance must
exist for the association to exist, and therefore the cardinality on the tail end is always
one.

• In those situations where a relationship may be modeled as either an association or as an
aggregation, the use of the association is preferred. Nevertheless, aggregations are not
discouraged, and may be used if they convey more meaning (e.g., panels). The
usefulness of the aggregation is that the semantic meaning of the association means
assembly or membership. Note that aggregate associations are different than composite
associations. In a composite association, the parent is responsible for creating and
destroying the child(ren). When the parent is destroyed, the child(ren) are destroyed. An
example is Order and OrderLineItem. Composite associations are acceptable.

• Composite associations are acceptable. In a composite association, the parent is
responsible for creating and destroying the child(ren). When the parent is destroyed, the
child(ren) are destroyed. An example is Order and OrderLineItem.

8. UML Profile
A UML Profile will be maintained for the VHIM in the VHIM RIM package. All stereotypes
used in the VHIM, other than standard UML stereotypes (e.g., Actor, Boundary), will be defined
in that package. Note that because Rose doesn’t support UML Profiles, it is up to the individual
modeler to manually make sure that the Stereotypes used are defined in the VHIM RIM.

9. Stereotypes
All allowable stereotypes other than standard UML stereotypes (e.g., Actor, Boundary) will be
defined in the VHIM UML Profile. The UML Profile defines the allowable set of stereotypes
and the types of model elements to which the stereotype may be applied. Because the current
tool in use, Rational Rose, does not enforce this rule automatically, care must be taken to ensure
that the stereotypes applied are indeed in the UML Profile and that the model elements to which
the stereotype is applied is a legal element for that stereotype. Stereotype names will be in
UpperCamelCase.

10. Definitions
All classes, attributes, and associations must have precise definitions documented in the model
and validated by the Subject Matter Experts. Where appropriate, it is preferable that the
definition be quoted or derived from a medical dictionary, HL7 documentation, or the Enterprise
Reference Terminology.

• The definition should concisely and precisely describe the concept represented by the
model element. The definition should stand on it’s own, and not force the reader to rely

VHIM Style Guide 15

on any context. Bear in mind that the definitions will be published in other forums, such
as the MetaData Repository, where the user will not have the benefit of the UML diagram
and does not necessarily have any knowledge of HL7. Ideally, the reader of the
definition should be able to immediately understand what the concept is, and, if
appropriate, what it is not.

• If the definition is lifted verbatim from an outside source (e.g., HL7, NCPDP, Webster’s),
it should be placed in quotation marks and the source cited in parenthesis. For example,
"A code specifying the modality by which the Entity playing the Role is participating in
the Act." (HL7 3.0)

• In general, the definition should not directly quote the HL7 RIM datatype definition, as
the HL7 RIM definition is generic, does not adequately describe the specific concept, and
can be found from the datatype anyway.

• If an example is given, use “e.g., “ within parenthesis. For example, “This represents the
day of the week (e.g., Monday).”

• If a clarification of a concept is needed, use “i.e., “ within parenthesis. For example,
“This is the duration of the illness (i.e., it includes a start date and an end date, either of
which may be empty).”

• When describing a coded attribute, it is helpful to list a few (not all) sample concepts that
would be expressed in the code. However, the actual codes should not be cited, as they
may change and thus break the definition. For example, for OrderHold.reason, the VistA
definition is:

o This field tells why the prescription was put on hold.1:Insufficient qty in stock; 2:Drug-Drug
Interaction; 3:Patient Reaction; 4:Physician to be contacted; 5:Allergy Reactions; 6:Drug
Reaction; 99:Other--See Comments

The corresponding VHIM definition is:
o Indicates why the order is/was put on hold. Possible values include: Out of stock, Drug-Drug

interaction, Patient adverse reaction, etc.
Notice the “Possible values include” at the beginning and the “, etc.” at the end. This
prevents the description from being too restrictive – and allows Enterprise Reference
Terminology to design the codeset as they see fit.

The following definition for InPatientMedicationRequest.infusionRate is illustrative:

Infusion: "Introduction of a solution into the body through a vein for therapeutic purposes." (American
Heritage Stedman's Medical Dictionary). This is the rate at which the solution is introduced into the body.
Expressed as volume/time (e.g., 500 ml/hr)

This definition defines the concept of Infusion Rate by first defining Infusion, which is directly
quoted from a medical dictionary. The concept of Infusion Rate is then described by building on
the definition of Infusion. Finally, an example is given as to how the concept would be used.

11. Naming
To determine a name for a concept being modeled, the primary source will be the HL7 version 3
Domain Message Information Model (DMIM), Refined Message Information Model (RMIM),
Vocabulary, Code Sets, and explanatory material in the Ballots. As detailed above, the class
name will come from the business name of the code used in the ClassCode or TypeCode
attribute. If the class is an Act, the business name of the mood code will be appended to the class
name. Note that the name chosen may need to be modified to conform to the naming

VHIM Style Guide 16

conventions above. This having all been said, it is noted that the data standardization and
terminology efforts with VHA may identify a different name for the same concept. In these
cases, the VHA name will be used instead of the HL7 name. The VHA name will then be
provided to the VHA HL7 Liason team to be brought back to HL7 for harmonization.

12. Aesthetics
• Each diagram should contain a label in the top left corner identifying the diagram name,

version, and date. The label should be light blue.
• Domain classes are color-coded based on the HL7 Act-Role-Entity pattern. Entities are

green, Roles are yellow, Participations are blue, and Acts are light red. All other classes
use the default color (light yellow-brown).

• The text font used should be Arial 10.

13. Issues
Several of the requirements in this document are due to or are influenced by characteristics of the
Rational Rose tool currently in use. This section details those issues

• Rational Rose does not display cardinality of attributes. This forces the use of the
<<Opt>> stereotype for optional attributes, and the use <<Set>>, <<List>>, and
<<Bag>> for attributes with a cardinality of more than one.

• Rational Rose does not properly support tagged values. While User Defined Properties
can be used, these are not visible in the diagrams. Tagged values may be used to track
certain metadata.

• Rational Rose does not yet support UML Profiles. While the VHIM UML Profile has
been defined and will be used, the tool will not enforce the profile. A manual effort will
be needed to ensure that the profile is properly applied.

• Rational Rose does not support qualified associations.
• Rational Rose does not permit grouping of attributes within a class.
• Rational Rose does not support constraints.

14. Acronyms

CIM Computationally Independent Model
DMIM Domain Message Information Model (from HL7 3.0)
HL7 Health Level 7
PIM Platform Independent Model
RDT VHIM Refined Data Type
RIM Reference Information Model (from HL7 3.0)
RMIM Refined Message Information Model (from HL7 3.0)
SRDT Specialized Refined Data Type
UML Unified Modeling Language
VHIM VHA Health Information Model

